Monday, December 30, 2019

How Many Habitable Planets are in the Milky Way Galaxy

One of the most profound questions we can ask about our universe is whether or not life exists out there. More popularly put, many people wonder if they have visited our planet? Those are good questions, but before scientists can answer those, they need to search out worlds where life might exist. NASAs Kepler Telescope is a planet-hunting instrument specifically designed to search for worlds orbiting distant stars. During its primary mission, it uncovered thousands of possible worlds out there and showed astronomers that planets are quite common in our galaxy. However, does that mean that any of them are actually habitable? Or better yet, that life actually exists on their surfaces? This Kepler Space Telescope image shows our position in the galaxy and the target area the telescope used to search out extrasolar planets across 3,000 light-years of space. The small blue circle on Earth shows the approximate extent that our radio, TV, and telecommunications signals have reached in just over a century since radio was first used. Galaxy painting by Jon Lomberg. NASA/Kepler Planet Candidates While data analysis is still underway, results from the Kepler mission have revealed thousands of planet candidates. More than three thousand have been confirmed as planets, and some of them are orbiting their host star in the so-called habitable zone. Thats a region around the star where liquid water could exist on the surface of a rocky planet. The numbers are encouraging, but they only reflect a small part of the sky. That is because Kepler did not survey the entire galaxy, but rather only one four-hundredth of the sky. And even then, its data only indicate a small fraction of the planets that could possibly exist throughout the galaxy. As additional data is accumulated and analyzed, the number of candidates will increase. Extrapolating out to the rest of the galaxy, scientists estimate that the Milky Way could contain upwards of 50 billion planets, 500 million of which could be in their stars habitable zones. Thats a lot of planets to discover! And of course, this is only for our own galaxy. There are billions upon billions more galaxies in the universe. Unfortunately, they are so far away that it is unlikely that we will ever know if life exists within them. However, if conditions were ripe for life in our neighborhood of the cosmos, chances are good that it can happen elsewhere, given enough materials and time. Its important to remember, however, that these numbers need to be taken with a grain of salt. Not all stars are created equal, and most of the stars in our galaxy exist in regions that may be inhospitable to life. Finding Planets in the Galactic Habitable Zone Normally when scientists use the words habitable zone, they are referring to a region of space around a star where a planet would be able to sustain liquid water, meaning the planet is neither too hot, nor too cold. But, it also  has to contain the needed blend of heavy elements and compounds to provide the necessary building blocks for life. A planet that occupies such a Goldilocks spot that is just right must also be free of the bombardment of excessive amounts of very high energy radiation (i.e., x-rays and gamma-rays). Those would seriously hinder the development of even basic life forms such as microbes. In addition, the planet probably shouldnt be in a very star-crowded region, since gravitational effects may prevent conditions from being conducive to life. Thats the reason that its not very likely there are worlds at the hearts of globular clusters, for example. A planets place in the galaxy may also affect its ability to contain life. In order to satisfy the heavy element condition, a world should be reasonably close to the galactic center (i.e., not near the edge of the galaxy). However, the inner parts of the galaxy could well be populated with supermassive stars about to die. Because of the high energy radiation from nearly continuous supernovae, that region could be dangerous for planets with life. The Galactic Habitable Zone So, where does that leave the search for life? The spiral arms are a good start, but they can be populated by a lot of supernova-prone stars or clouds of gas and dust where new stars are forming. So that leaves the regions between the spiral arms that are more than a third of the way out, but not too close to the edge. An artists concept of what our galaxy looks like from outside. Note the bar across the center and the two main arms, plus smaller ones. NASA/JPL-Caltech/ESO/R. Hurt While controversial, some estimates put this Galactic Habitable Zone at less than 10% of the galaxy. Whats more is that, by its own determination, this region is decidedly star-poor; most of the galaxies stars in the plane are in the bulge (the inner third of the galaxy) and in the arms. So we may only be left with 1% of the galaxys stars that can support life-bearing planets. And it may be less than even that, much less. So How Likely Is Life in Our Galaxy? This, of course, brings us back to Drakes Equation—a somewhat speculative, yet fun tool for estimating the number of alien civilizations in our galaxy. The very first number on which the equation is based is simply the star formation rate of our galaxy. But it doesnt take into account where these stars are forming, an important element considering the fact that most of the new stars born reside outside the habitable zone. Suddenly, the wealth of stars, and therefore potential planets, in our galaxy seems rather small when considering the potential for life. So what does this mean for our search for life? Well, it is important to remember that however difficult it may appear for life to emerge, it did so at least once in this galaxy. So there is still hope that it could, and has, happened elsewhere. We just have to find it. Edited and updated by Carolyn Collins Petersen.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.